
Live Upgrades
on Running
Systems:
8 Ways to Upgrade a Running
Service With Zero Downtime

Tom Limoncelli @YesThatTom
EverythingSysadmin.com

With material from…

Who is Tom Limoncelli?
Sysadmin since 1988

Worked at Google, Bell Labs plus
many smaller companies.

SRE at Stack Exchange, Inc
serverfault.com / stackoverflow.com

Blog: EverythingSysadmin.com

Twitter: @YesThatTom

Goal:

• Zero downtime due to upgrade
• Reduced risk
• Increased confidence

A rose by any other name
• "Upgrades"
• "Code pushes"
• "Deploy"
• "Deployment"
• "Push to production"
• "Software Upgrades"

Why live upgrades?

Why?

• Zero downtime.
• The web is 24/7
• No more "under construction"

logo

And...
• If we can do it live, we can do it

often.
• More "code pushes" means more

ability to innovate.
• ("innovate" -- A big word that

means "try new things")

When?

The best time to do
upgrades is during the

day.

Old View:
Do upgrades at night

• Upgrades require downtime.
• Downtime should be isolated to

low-traffic times.
• Risky procedures should be

done when mistakes have the
least impact.

New View:
Working at night is bad

It is better to avoid...

• Sleepy sysadmins
• Problems happening when key

people are unavailable
• Disrupting weekends, sleep, or

other leisure

New view:
Day-time upgrades are

good

New view:
• Design systems that can be

upgrades while running.
• Upgrades done when key people

are available, awake, sober.
• Risky procedures should be

repeated until they are no longer
risky.

Risk is inversely
proportionally to how recently
the process has been used.

Risk is inversely proportionally
to how recently the process

has been used.

more
recent

less
recent

Backups
that have

never
been

restored

LB web
servers

that fail all
the time

Continuous
Software

Deployment

Software
Upgrades

every 3
years

most
risky

least
risky

Small batches

“Big Bang” releases
are inherently risky.

Small batches are better
Fewer changes each batch:

• If there are bugs, easier to identify source
Reduced lead time:

• It is easier to debug code written recently.
Environment has changed less:

• Fewer “external changes” to break on
Happier, more motivated, employees:

• Instant gratification for all involved

ProTip: Follow the sun
upgrades

• Two teams, 8 timezones apart.
• Each team can do upgrades for

the other

"Pets vs. Cattle"

Pets are unique, hand reared and lovingly
cared for -- they are, by all considerations,
members of the family. They have names.

Cattle are largely identical,
managed in herds, and bought
and sold as a commodity -- they

are, in effect, food. Rarely named.

Servers that are Pets
• Carefully constructed.
• If it gets sick, we fix it.
• Example:

• That enterprise box used for
LDAP/SMTP/DNS/DHCP/IMAP

Servers that are Cattle

• Automated installation/
configuration.

• Problem? Wipe and reload.
• Example: Web servers with little

or no "state".

Pet

Web Server

Database

State

SAN

Cattle + Pet

Web Server Database

Stateless State

SAN

Cattle + Cattle + Pet

Web Server Database
Service

Stateless State

Homework: reduce the
"pets" in your system.

• Try to have fewer pets every year
and with each new design.

Technique #0
Upgrade while the

service is down
(not a "live upgrade" technique)

"In-place" upgrade:

• Turn it OFF
• UPGRADE
• Turn it ON

Clone then upgrade clone:

• Clone old machine.
• Upgrade clone.
• Swap into place.

Quiz:
After cloning, do we upgrade

the original or the clone?

Can cloning be done
while the system is up?

Can swapping be done
with no down time?

In-place vs. Clone+Swap

• Less risk
• You can swap back to original.

• Less downtime
• But you still have downtime.

"state"

• Databases
• Configurations
• User data
• etc.

Copying state can take
hours, days, months.

• May be too big to have second
copy.

• Copying optimizations: live copy
+ delta update later

Risk Downtime Copy Time

In-Place Highest Medium None

Clone + Swap High A lot A lot + delta

Install + Swap High Some A lot + delta

Install + Swap
w/remote state Low Minimal None

Case Study:
Upgrading the pipeline

Crawler Indexer DatabaseRanker

Web

Web

Web U
SA

 C
op

y

Crawler Indexer

Distributer

DatabaseRanker

W
eb

W
eb

W
eb

Europe Copy

W
eb

W
eb

W
eb

Asia Copy

Web

Web

Web U
SA

 C
op

y

Crawler Indexer

Distributer

DatabaseRanker

W
eb

W
eb

W
eb

Europe Copy

W
eb

W
eb

W
eb

Asia Copy

Web

Web

Web U
SA

 C
op

y

Distributer

Database

W
eb

W
eb

W
eb

Europe Copy

W
eb

W
eb

W
eb

Asia Copy

While the pipeline was down

• Duration:
• The longer the pipeline was

down, the less “fresh” the data
was.

• But the users never directly felt
an outage

When possible, architect
your systems to decouple

gathering and serving.

Now... 8 live upgrade
techniques

Technique #1

Rolling upgrades

Rolling upgrades

• Upgrade one replica at a time

Rolling upgrades
• foreach replica

• Drain it & Remove from service
• Upgrade it
• Test it
• Return to service

• Repeat

Web

Web

Web U
SA

 C
op

y

W
eb

W
eb

W
eb

Europe Copy

W
eb

W
eb

W
eb

Asia Copy

X

Web

Web

Web U
SA

 C
op

y

W
eb

W
eb

W
eb

Europe Copy

W
eb

W
eb

W
eb

Asia Copy

X

Web

Web

Web U
SA

 C
op

y

W
eb

W
eb

W
eb

Europe Copy

W
eb

W
eb

W
eb

Asia Copy

X

Web Server

Load Balancer

Web Server Web Server Web Server Web ServerXX XWeb Server X XWeb Server X XWeb Server X XWeb Server

What is "Draining"

• Take the item out of the load balancer.

• Wait until no new queries

• Wait until old queries are completed.

Lame Duck Mode
• Programming the LB remotely is

difficult.
• Instead, have server "lie" about its

health. Claim to be down, but
process queries.

• LB will take the server out of
rotation.

Starting in lame-duck mode

• Server should not claim to be
healthy until it is ready to receive
requests.

• Optionally, stay in lame-duck
mode until trigger.

Caveats:

• Reduced capacity during
upgrades.

• Can remaining machines handle
the load?

What if there is an outage?

• ProTip: Have enough capacity for
2 replicas to be down at any time.

• One down for planned
maintenance.

• One down due to failure.
• This is called N+2 redendancy

Technique #2
Google “Canary”
upgrade process

Canary (def'n)
• In the 1800s coalminers took

canaries into the mines with them.
• Canaries are sensitive to toxic

fumes.
• If the canary died, the miners

would leave the mine.

"Canary in a Coal Mine" by
The Police

First to fall over when the
atmosphere is less than
perfect
Your sensibilities are
shaken by the slightest
defect
You live you life like a
canary in a coal mine
You get so dizzy even
walking in a straight line

The Canary Process
(overview)

• Used when upgrading 100s or 1000s
of replicas.

• Basic premise:
• Upgrade 1 machine.
• Let it run.
• If it doesn't fail after xx minutes,

upgrade the remaining.

The Canary Process (detail)
• Remove one machine from LB.
• Upgrade it. Send tests. Add to load

balancer.
• Wait 10 minutes.

• Upgrade one per minute until 1% of all
machines are done.

• Upgrade one per second until all
machines are done.

If there is a failure?
• Stop the process.
• Capacity is reduced but service

is still provided.
• Revert to old version if capacity

is needed.

Canary is not a testing
process

• It happens after testing is done.
• You want tests to fail: (it finds

problems)
• You don't want canaries to die: it

means you didn't test enough.
• Canary is an insurance policy

against insufficient testing.

If you use canary as a testing
process, you are testing on live

users. This is bad system
administration.

Anecdote:

The canary that accidentally
became a "testing on live users"

Technique #3

Phased Roll-outs

Phased Roll-outs

• Upgrade one group of users at a
time

Facebook:
• Service is provided on many self-

contained "clusters".
• Clusters are upgraded one at a time.
• employee-only cluster.
• beta-user cluster.
• global regions
• etc.

W
eb

W
eb

W
eb

Dev/Test

W
eb

W
eb

W
eb

Employees

W
eb

W
eb

W
eb

Early Access

Web

Web

Web

As
ia

Web

Web

Web

Eu
ro

pe

WebWebWeb

USA

W
eb

W
eb

W
eb

Early Access

W
eb

W
eb

W
eb

Dev/Test

W
eb

W
eb

W
eb

Employees

Web

Web

Web

As
ia

Web

Web

Web

Eu
ro

pe

WebWebWeb

USA

• Use the same roll-out process in
all environments.

• Automate to assure this.
• You are testing the roll-out

process as much as you are
testing the code.

Stack Exchange: Q&A
software

130 web communities, plus meta's.
(same software, different CSS)

StackOverflow.com
meta.StackOverflow.com

ServerFault.com
meta.ServerFault.com

parenting.stackexchange.com
meta.parenting.stackexchange.com

pets.stackexchange.com
meta.pets.stackexchange.com

meta.StackExchange.com

Phased Roll-Outs
• Dev environment

• Test environment

• Meta sites

• Less populated communities

• More populated communities

• StackOverflow.com itself

Healthcare.gov:
50 states on day 1

• What if they had started with Rhode Island?

Technique #4
Proportional
Shedding

Proportional Shedding

• Transition from old release to
new release slowly over time.

• i.e. "Shed" the load.

Example:
• Cluster A: Old software

• Cluster B: Built with new software

• Load balancer sends 100% traffic to A

• Then shifts 1% traffic to B

• Then shifts 2% traffic to B

• ..

• Then shifts 90% traffic to B

• ...

• Then shifts 100% traffic to B

100%

Load Balancer

0%

90%

Load Balancer

10%

100%

Load Balancer

0%

Positives:
• Full capacity always available
• Change as fast or as slow as you

wish.
• 1% then wait (like a Canary)
• 0 to 100% over an hour
• 0 to 100% over the course of a day

Negatives:

• Requires 2x the capacity.

Proportional Shedding on 1
machine?

• Yes!
• If the service is self-contained in

a subdirectory.
• Incoming traffic goes to Nginx or

other load balancer.

Technique #5

Feature Toggles

Feature Toggles
• Tie new features to command-

line flags.
• Start with flag=False.
• Set flag=True to enable feature
• Problems? Change flag=False.

Example:
• Suppose your site doesn't have a real-time

spell-checker.
• Code is "hidden behind this flag".
• Code can be developed in stages, with

feature off.
• Code can stay hidden for months.
• No "big merge" (reduces "bad merge" risk).

Command line flags

$ my-server --sp-algorithm-v2 \
--morphological=off

Environment variables:

$ export SP_ALGORITHM_V2=yes
$ export SP_MORPHOLOGICAL=off
$ my-server

Flag files

$ cat spell.flags
sp-algorithm-v2=on
morphological=off
$ my-server --flagfile=spell.flags

Flag "lockfiles" (ZooKeeper)

my-server --zkflags=/zookeeper/config/spell

Uses:
• Rapid development
• Gradual introduction of new features
• Finely timed release dates
• Dynamic rollbacks
• Bug Isolation
• A-B testing
• 1 percent testing
• Differentiated services

Technique #6
Facebook’s “Dark
Launch” system

How do you launch a
feature that will have 70
million users on day 1?

What could possibly go
wrong?

• Inaccurate capacity estimates
• Unforeseen issues that only

appear at big scale
• Bugs

Load testing 10,000 users will
not reveal problems seen at 1

million users or 70 million users.

Simulate 10,000 users
and multiple by 7,000.

(won't work)

Small companies have it
easy

• Starting from zero users, it is
easy to grow slowly over time.

A big problem for big
companies

• Facebook, Google, and others
have to go from 0 to millions of
users on the first try or it is
headline news.

Hide behind a flag?

• Permits us to disable the feature.
• What if the "big announcement"

is on Tue, December 2 and we
want the feature to go live at the
same time?

Soft launch:
• Feature is enabled but not

announced.
• Usage grows slowly due to "word

of mouth".
• Feature can be disabled entirely

because it isn't "official" yet.

Dark Launch for Facebook
Chat

• Would have 70 million users on the
first day.

• Could not accurately predict:
• capacity needed on "day 1".
• problems at this scale.

• Systems have become too big and too
complex to be predictable.

Dark Launch:
• Feature is enabled but invisible
• Feature sends artificially

generated data to chat system
• Capacity is tested
• Issues found early

How to select users?

• A random 10,000 users?
• 1% of all users?
• (Growing to all users over time)

Facebook Gatekeeper
• "Pushing Millions of Lines of Code Five Days a

Week" (Facebook, 2011, Chuck Rossi)
• "Gatekeeper" permits fine-grained control over

which features are revealed to which users.
• Country
• Age
• Datacenter
• Is user a known TechCrunch employee

The code for every feature
Facebook will announce in the

next six months is probably in your
browser already.

Scientific discoveries often come
from testing things that don't need

to be tested, and getting
unexpected results.

Google's IPv6 Dark Launch
• Injected JavasScript code that queried for an

image available via IPv4 and IPv6.
• "Shouldn't have any problems"
• Found operating system bugs, IPv6 "islands".
• Quantified Risk.
• Enabled fixing problems before visible.
• Reduced risk of highly visible "black eye" for

IPv6.

Technique #7
Live Schema

Changes

Replica 1 Database
Service

Replica 0

Replica 2

…
…

Replica 2
(Version N)
Replica 2

(Version N+1)

Replica 1
(Version N)

Database
Service

Replica 0
(Version N)

…
…

Replica 2

Database
ServiceReplica 1 Database
Service

Replica 0

…
…

Why is this difficult?
• Catch-22: Can't change the

database first. Can't change the
code first.

• With many of replicas, can't
upgrade them all at once.

• Can't canary.

If you only add new
fields, you are ok.
(But what about

complex changes?)

SQL Views
• Use "Views" to hide the changes.
• Programmers code to the "view"

API.
• Change the schema? Change

the view code at the same time.

Example:

• Before schema change: View
accepts new fields and
semantics, translates.

• After schema change: View is a
"no op".

What about systems with no
"views"?

• Views are a PITA because they
require discipline.

• Some systems don't support
views.

The McHenry Technique

• 5 phases with clearly defined
back-out steps for each one.

Overview:
• Replicas upgraded to handle old

and new schema.
• Schema is changed.
• Replicas upgraded to handle

only new schema.

Phase 1:

• The running code reads and
writes the old schema, selecting
just the fields that it needs from
the table or view.

• This is the original state.

Original software, Original Schema

Phase 2: "Expand"
• The schema is modified by adding

any new fields, but not removing
any old ones.

• No code changes are made.
• If rollback is needed, it's painless

because the new fields are not
being used.

Original software, Schema + New Fields

Phase 3:

• Code is modified to use the new
schema fields and pushed into
production.

Dual-Compatible software, Schema + New Fields

If rollback is needed, it
just reverts to to phase 2.

At this time any
data conversion

can be done while the
system is live.

Phase 4: "Contract"

• Code that references the old,
now unused, fields is removed
and pushed into production.

• If rollback is needed, it just
reverts to phase 3.

New “Pure” Software, Schema + New Fields

Phase 5:
• Old, now unused, fields are

removed from the schema.
• In the unlikely event that a

rollback is needed at this point,
the database would simply revert
to phase 4.

New “Pure” Software, New “Pure” Schema

Optimizations:
• Combine or overlap Phases 4 & 5.
• Lazily remove old fields in future

releases.
• Phase 5 from schema version n is

combined with Phase 2 from
schema version n+1.

Technique #8
Languages support

for live code upgrades

Languages support for live
code upgrades

• Geordi "rewrote the subroutine"
live, right?

• Generally frowned upon in real
life, but what if language
supports it?

Erlang

• Properly structured Erlang
programs are designed as
event-driven finite-state
machines (FSM).

The Details
• For each event received, a specific function is

called.
• One "event" is the "code has been upgraded" event.
• Function assigned to that event upgrades any data

structures in-place.
• All subsequent events trigger functions from the new

software version.
• This requires careful planning and procedures. See:
• http://learnyousomeerlang.com/what-is-otp

Phone Off Phone
Dialing

Call
Connecting

Call In
Progress

Call
Disconnect

ing

Key
Pressed Func AA Func AB Func AC Func AD Func AE

Audio
Received Func BA Func BB Func BC Func BD Func BE

Audio Sent Func CA Func CB Func CC Func CD Func CE

UPGRADE Func U Func U Func U Func U Func U

Bringing it all together

Continuous Integration:
• Every code change results in compile + test

Continuous Delivery:
• Every CI results in automated testing; if passed

the packages are fit for deployment.
Continuous Deployment:

• Every successful CDelivery results in
deployment to an environment (test, beta, prod)

Con!nuous
integra!on

Con!nuous
delivery

Con!nuous
deployment

Develop

Configuration

Code

Data

Tests

Automation
modules

Resource
model

Monitor /
Metrics

Builder Packager Packages Installer Automation
framework

Infrastructure
manager

Modular
automation

Operations
console

Package
repository

Source
repository

Environment

Server
specification

Monitor /
Metrics

Automation
modules

Acceptance
tests

Builder Packager Installer Automation
framework

Deploy

Service delivery platform design pattern

Build

In
fra

st
ru

ct
ur

e
Ap

pl
ica

tio
n

Packages

Images

Build
console

Commit Build Package Register Promote Install Configure

Reprinted with permission - DTO Solutions

Google Example:

• Making "Push On Green" a
Reality: Issues & Actions
Involved in Maintaining a
Production Service

• Usenix LISA 2014

Techniques discussed:
0. Take the system down for upgrade
1. Rolling upgrades
2. Google’s “canary” upgrade system
3. Proportional Shedding
4. Feature Toggles
5. Facebook’s Dark Launch system
6. Upgrades that involve schema changes.
7. Languages that support live code upgrades
8. Continuous Deployment

Summary:
• Systems should be re-engineered

to be upgraded live.
• There are many techniques, and

many variations.
• Once automated, upgrades can be

more frequent, with higher
confidence.

Ability to Upgrade is becoming
a business imperative

• It accelerates the ability to roll
out new features and
improvements.

• It is a prerequisite to maintaining
security. (ShellShock, anyone?)

Live Upgrades
on Running
Systems:
8 Ways to Upgrade a Running
Service With Zero Downtime

Tom Limoncelli @YesThatTom
EverythingSysadmin.com

With material from…

