Live Upgrades
On Running With mte[ilfrom...

’ T §,
N VOLUME R4

| THE PRACTICE OF
yS e m S - CLOUD SYSTEM

, ADMINISTRATION
8 Ways to Upgrade a Running TR el
Service With Zero Downtime

Tom Limoncelli @YesThatTom
EverythingSysadmin.com

AA

Who is Tom Limoncelli”?

Sysadmin since 1988 RN VOLUME 2 X -

THE PRACTICE OF
CLOUD SYSTEM
ADMINISTRATION

SRE at Stack Exchange, Inc DESIGNING AND OPERATING
serverfault.com / stackoverflow.com LARGE DISTRIBUTED SYSTEMS

Worked at Google, Bell Labs plus
many smaller companies.

Blog: EverythingSysadmin.com

inglecol

Twitter: @YesThatTom

The Practice of ; i Practice of
System and Network THE COMPLETE System and Network

s ey M k
Administration e Administration

Managernent

THOMAS A. LIMONCELLI * STRATA R. CHALUP * CHRISTINA J. HOGAN

Goal;

e /Zero downtime due to upgrade

e Reduced risk
e [Increased confidence

A rose by any other name

* 'Upgrades’
» 'Code pushes’

» 'Deploy"

e 'Deployment’
* "Push to production’
e "Software Upgrades’

Why live upgrades?

Why??

e /ero downtime.
e The web Is 24/7

e No more "under construction’
0go

And...

e [f we can do it live, we can do it
often.

* More "code pushes” means more
ability to innovate.

* ("iInnovate” -- A big word that
means "try new things")

When??

The best time to do
upgrades Is during the
day.

Old View:
Do upgrades at night

* Upgrades require downtime.

done when

* Risky proced

e Downtime should be Isolated to
ow-traffic times.

Jres should be

T

least Impact.

IStakes have the

NEAIIEYY
Working at night Is bad

1t 1S better to avold...

e Sleepy sysadmins

* Problems happening when key
people are unavallable

* Disrupting weekends, sleep, or
other leisure

NEVAVIE\S
Day-time upgrades are
gooa

New view:

e Design systems that can be

upgrades while running.

e L
a

pgrades done w

‘e avallable, awa

nen key people

Ke, sober.

* Risky procedures should be
repeated until they are no longer
ISKky.

Risk Is inversely
proportionally to how recently
the process has been used.

Risk is inversely proportionally
to how recently the process
has been used.

most least
risky risky
less more
recent recent
Backups Software Continuous B Web
that have Upgrades Software SISIQVIETES
never every 3 Deplovment that fail all
been years IOy the time
restored

Small batches

‘Big Bang” releases
are inherently risky.

Small batches are better

Fewer changes each batch:

e |f there are bugs, easier to identify source
Reduced lead time:

* |t Is easier to debug code written recently.
Environment has changed less:

* Fewer “external changes” to break on
Happier, more motivated, employees:

* Instant gratification for all involved

Prolip: Follow the sun
upgrades

e [wo teams, 8 timezones apart.

e Each team can do upgrades for
the other

'Pets vs. Cattle”

Cattle are
managed in

and so

d as a commodar

are, in e

argely identical,
nerds, and bought

'y -- they

fect, food. Rare

VY named.

Servers that are Pets

e Carefully constructed.
* |t it gets sick, we fix It.

e Example:

* That enterprise box used for
LDAP/SMTP/DNS/DHCP/IMAP

Servers that are Cattle

e Automated installation/
configuration.

* Problem” Wipe and reload.

 Example: Web servers with little
or no 'state”.

Pet

Web Server

Database

State

Cattle + Pet

Web Server Database

Stateless State

Cattle + Cattle + Pet

Web Server Datapase YA
Service

Stateless State

Homework: reduce the
‘pets’ In your system.

* Try to have fewer pets every year
and with each new design.

Technigque #0

Upgrade while the
service 1S down

(not a "live upgrade” technique)

UNDER CONSTRUCTION

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
PLERSE VISIT US LATER

‘In-place” upgrade:

e Turn it OFF
e UPGRADE
e Turn it ON

Clone then upgrade clone:

* Clone old machine.
* Upgrade clone.
* Swap into place.

Quiz:
After cloning, do we upgrade
the original or the clone?

Can cloning be done
while the system is up”

Can swapping be done
with no down time?

In-place vs. Clone+Swap

* L ess risk
* You can swap back to original.

e | ess downtime

e But you still have downtime.

‘State’

* Databases

e Configurations
* User data

e efC.

Copying state can take
hours, days, months.

* May be too big to have second
Copy.

» Copying optimizations: live copy
+ delta update later

Highest Medium None
High A lot A lot + delta
High Some A lot + delta
Low Minimal None

Case Study:
Upgrading the pipeline

Crawler Indexer Ranker Database

Crawler Indexer Ranker Database

\

Web
Web
‘ Web
=== = & &
) Q) Q) O O O
O O O

Europe Copy ~ElEl Py

Crawler Indexer Ranker Database

\

Web
Web
‘ Web
=== = & &
) Q) Q) O O O
O O O

Europe Copy ~ElEl Py

Database

Web
Web
: Web
=== = & &
) Q) Q) O O O
O O O

Europe Copy Al oY

While the pipeline was down

e Duration:

* [he longer the pipeline was
down, the less “fresh” the data
was.

e But the users never directly felt
an outage

When possible, architect
your systems to decouple
gathering and serving.

Now... 8 live upgrade
technigues

Technigue #1

Rolling upgrades

Rolling upgrades

* Upgrade one replica at a time

Rolling upgrades

 foreach replica

Drain it & Remove from service

Jpgrade it

e Jest it

Return to service

* Repeat

®
O

= —
> o
o O

Europe Copy

= |= | =

Q) D Q)

O O O
Asia Copy

Web

Web

Web

USA Copy

®
O

= —
> o
o O

Europe Copy

= |= | =

Q) D Q)

O O O
Asia Copy

Web

Web

Web

USA Copy

®
O

= —
> o
o O

Europe Copy

= |= | =

Q) D Q)

O O O
Asia Copy

Web

Web

Web

USA Copy

Load Balancer

Web Server Web Server Web Server Web Server Web . erver

What Is "Draining’

e Take the item out of the load balancer.
e Walit until no new queries

e Wait until old queries are completed.

L ame Duck Mode

* Programming the LB remotely Is

difficult.

process que

e | B will take t
rotation.

e Instead, have server 'lie" about Its
nealth. Claim to be down, but

'|es.

ne server out of

Starting in lame-duck mode

e Server should not claim to be
healthy until it Is ready to receive
requests.

e Optionally, stay in lame-duck
mode until trigger.

Caveats:

* Reduced capacity during
upgrades.

* Can remaining machines handle
the load?

What if there is an outage”

* ProTip: Have enough capacity for
2 replicas to be down at any time.

* One down for planned
maintenance.

* One down due to failure.
* This Is called N+2 redendancy

Technigue #2

Google “Canary”
upgrade process

Canary (detf'n)

e |n the 1800s coalmi
canaries into the mi

e Canaries are sensiti
fumes.

* |t the canary died, t

ners took

nes with them.
ve to toxic

ne Mminers

would leave the mir

e.

‘Canary in a Coal Mine" by
The Police

First to fall over when the
atmosphere Is less than
perfect

Your sensibilities are
shaken by the slightest
defect

You live you life like a
canary in a coal mine

You get so dizzy even
walking in a straight line

ZeNy A M‘h P/

The Canary Process
(overview)

* Used when upgrading 100s or 1000s
of replicas.

e Basic premise:
 Upgrade 1 machine.
e et itrun.

* | It doesn't fail after xx minutes,
upgrade the remaining.

The Canary Process (detail)

e Remove one machine from LB.

* Upgrade it. Send tests. Add to load
balancer.

e Wait 10 minutes.

* Upgrade one per minute until 1% of all
machines are done.

* Upgrade one per second until all
machines are done.

If there Is a fallure”

* Stop the process.

e Capacity Is reduced but service
IS still provided.

* Revert to old version if capacity
IS heeded.

Canary is not a testing
ProCess

* |t happens testing Is done.

e You want tests to fail: (it finds
problems)

e You don't want canaries to die: it
means you didn't test enough.

» Canary is an insurance policy
against insufficient testing.

If you use

canary as a testing

process, you are testing on live

users. |
ad

NIS IS bad system

ministration.

Anecdote:

The canary that acci
became a "testi

gleRe

dentally

N live users’

Technigque #3

Phased Roll-outs

Phased Roll-outs

» Upgrade one group of users at a
time

FacenooK:

» Service is provided on many selt-
contained “clusters”.

» Clusters are upgraded one at a time.
 employee-only cluster.

* beta-user cluster.

 global regions

e efc.

=
D
o

=

)
O

Dev/Test

=
D
o

=
D
o

GOM
G9M

Employees

GBM
GBM
GBM

Early Access

Web

Web

Web

Web

Web

Web

Asia

Europe

* Use the same roll-out process in
all environments.

e Automate to assure this.

* You are testing the roll-out
process as much as you are
testing the code.

Stack Exchange: Q&A
software

130 web communities, plus meta's.
(same software, ditfferent CSS)

_ StackOverflow.com
I=l stackoverflow meta.StackOverflow.com

meta.ServerFault.com

parenting.stackexchange.com
meta.parenting.stackexchange.com

pets.stackexchange.com
meta.pets.stackexchange.com

meta.StackExchange.com

Phased Roll-Outs

e Dev environment

e Test environment

 Meta sites

e |ess populated communities
 More populated communities

e StackOverflow.com itself

Healthcare.gov:
50 states on day 1

 What if they had started with Rhode Island?

Technigue #4

Proportional
Shedding

Proportional Shedding

e Transition from old release to
new release slowly over time.

e |.e. "Shed" the load.

Example:

Cluster A: Old software

Cluster B: Built with new software
Load balancer sends 100% traffic to A
Then shifts 1% traffic to B

Then shifts 2% traffic to B
Then shifts 90% traffic to B

Then shifts 100% traffic to B

POsSItIves:

e Full capacity always avallable

* Change as fast or as slow as you
wish.

* 1% then walit (like a Canary)
* 0 to 100% over an hour
* 0 to 100% over the course of a day

Negatives:

* Requires 2x the capacity.

Proportional Shedding on 1

* Yes!

machine”?

e |[f the service Is self-contained In
a subdirectory.

e |1

COoIr

O

her

iNng traffic goes to Nginx or
oad balancer.

Technigue #5

Feature loggles

~eature loggles

e Tle new features to command-
ine flags.

e Start with flag=False.
e Set flag=True to enable feature

* Problems” Change flag=False.

Example:

* SUPPOSe your site doesn't have a real-time
spell-checker.

* Code is "hidden behind this flag".

* Code can be developed in stages, with
feature off.

» Code can stay hidden for months.
* No "big merge" (reduces "bad merge’ risk).

Command line flags

S my-server --sp-algorithm-v2 \
—--morphological=off

Environment variables:

$ export SP ALGORITHM V2=yes
$ export SP MORPHOLOGICAL=off
S my-server

Flag files

S cat spell.flags
sp—algorithm-v2=on
morphological=off

S my-server --flagfile=spell.flags

Flag "lockfiles” (ZooKeeper)

my-server --zkflags=/zookeeper/config/spell

Uses:

e Rapid development

e Gradual introduction of new features
e Finely timed release dates

* Dynamic rollbacks

* Bug Isolation

* A-B testing

* 1 percent testing
 Differentiated services

Technigue #6

Facebook’'s "Dark
L auncn” system

How do you launch a
feature that will have 70
million users on day 17

What could possibly go
wrong®?

* |naccurate capacity estimates

* Unforeseen issues that only
appear at big scale

* Bugs

Load testing 10,000 users will
not reveal problems seen at 1
million users or 70 million users.

Simulate 10,000 users
and multiple by 7,000.
(won't work)

Small companies have it

easy

e Starting from zero users,

It IS

easy to grow slowly over time.

A big problem for big
companies

—acebook, Google, and others
nave to go from O to millions of
users on the first try or it is
neadline news.

Hide behind a flag”?

e Permits us to disable the feature.

e What |

IS ON

f the "big announcement’

Tue,

December 2 and we

want the feature to go live at the

same t

ime”

Soft launch:

e Feature Is enabled but not
announced.

* Usage grows slowly due to "worad
of mouth”.

* Feature can be disabled entirely
because it isn't "official” yet.

Dark Launch for Facebook
Chat

e Would have 70 million users on the
first day.

e Could not accurately predict:

* capacity needed on ‘day 1°.
* problems at this scale.

e Systems have become too big and too
complex to be predictable.

Dark Launch:

e Feature I1s enabled but invisible

e Feature sends artificially
generated data to chat system

e Capacity Is tested
* |ssues found early

How to select users”?

e A random 10,000 users”
e 1% of all users”?
* (Growing to all users over time)

Facebook Gatekeeper

 "Pushing Millions of Lines of Code Five Days a
Week" (Facebook, 2011, Chuck Rossi)

e 'Gatekeeper' permits fine-grained control over
which features are revealed to which users.

e Country

* Age

e Datacenter

* |s user a known TechCrunch employee

The code-

or every feature

Facebook wi

Il announce In the

next six months is probably In your
browser already.

Scientific discoveries often come
from testing things that don't need
to be tested, and getting
unexpected results.

Google's IPve Dark Launch

* Injected JavasScript code that queried for an
image available via IPv4 and IPve.

e "Shou

e Founa

dn't have any problems”

operating system bugs, IPv6 "islands”.
» Quantified Risk.
* Enabled fixing problems be

‘ore visible.

* Reduced risk of highly visib

IPVO.

e "black eye' for

Technique #7

LIive Schema
Changes

Why Is t

his difficult”

e Catch-22: Can't change the
database first. Can't change the

code first.
 With many o

replicas, can't

upgrade the

M all at once.

e Can't canary.

't you only add new
fields, you are ok.
(But what about
complex changes?)

SQL Views

e Use "Views' to hide the changes.

* Programmers code to the "view'

A

-

* Change the schema” Change
the view code at the same time.

Example:

* Before schema change: View
accepts new fields and
semantics, translates.

» After schema change: View is a
Ilno Op"_

What about systems with no
'views"?

* Views are a PITA because they
require discipline.

e SOme systems don't support
VIEWS.

The McHenry lTechnigque

* 5 phases with clearly defined
back-out steps for each one.

Overview:

* Replicas upgraded to handle ola
and new schema.

* Schema is changed.

* Replicas upgraded to handle
only new schema.

Phase 1:

* [he running code reads and
writes the old schema, selecting
just the fields that it needs from
the table or view.

* This Is the original state.

Phase 2: "Expand’

* The schema is modified by adding
any new fields, but not removing
any old ones.

 No code changes are made.

e |t rollback is needed, it's painless
because the new fields are not
being used.

Phase 3.

Dual-Compatible software

* Code is modified to use the new
schema fields and pushed into
oroduction.

f rollback is needed, it
Just reverts to to phase 2.

At this time any
data conversion
can be done while the
system is live.

Phase 4: "Contract’

e Code that references the old,
now unused, fields is removed
and pushed into production.

* |t rollback is needed, it just
reverts to phase 3.

Phase 5.

Ty T

e Old, now unused, fields are
removed from the schema.

* |In the unlikely event that a
rollback I1s needed at this point,
the database would simply revert
to phase 4.

* Combine or overlap

Optimizations:

Phases 4 & 5.

* Lazily remove old fields in future
releases.

CO
SC

aale]

ned with

e Phase 5 from schema versi

Phase 2 fro

el

a versior

n+1.

on nis

il

Technigque #8

L anguages support
for live code upgrades

. anguages support for live
code upgrades

e Geordi "rewrote the subroutine”
ive, right”?

* Generally frowned upon in real

‘e, but w

S

Upports

nat If

"7

anguage

Erlang

* Properly structured
programs are desig
event-driven fir

Mac

nines (FSM).

ite-s

~rlang
ned as

ate

The Detalls

e For each event received, a specific function is
called.

* One "event" is the "code has been upgraded” event.

e Function assigned to that event upgrades any data
structures in-place.

 All subsequent events trigger functions from the new
software version.

 This requires careful planning and procedures. See:
e http://learnyousomeerlang.com/what-is-otp

Func BA

Func BB

Func BC

Func BD

Func BE

Func CA

Func CB

Func CC

Func CD

Func CE

Func U

Func U

Func U

Func U

Func U

Bringing It all together

Continuous Continuous Continuous
integration delivery deployment

Continuous Integration:
* Every code change results in compile + test

Continuous Delivery:
* Every Cl results in automated testing; it passed
the packages are fit for deployment.

Continuous Deployment:
* Every successful CDelivery results in
deployment to an environment (test, beta, prod)

Develop Commit Build Package Register

Application

Infrastructure

Configuration

Monitor /_
Metric

&

Resource
model

|

Automation'
modules

9

Source
repository

Environment
\-—/—E-

Server
specification

Acceptance
tests

Monitor /
Metrics

Ahtomatioﬁ
modules

Service delivery platform design pattern

Builder Packager

Build
console

Builder Packager

Build

Packages |||

Package
repository

Packages |||
]
Images |

Promote

Install Configure

Installer Automation
framework

Operations Modular | | Infrastructure
console automation manager

Automation

Installer
framework

Deploy

Reprinted with permission - DTO Solutions

Google Example:

* Making "Push On Green" a
Reality: Issues & Actions
Involved in Maintaining a
Production Service

* Usenix LISA 2014

lTechnigques discussea:

Take the system down for upgrade
Rolling upgrades

Google’s “canary” upgrade system
Proportional Shedding

—eature Toggles

—acebook’s Dark Launch system
Upgrades that involve schema changes.
Languages that support live code upgrades

© N O Ok D = O

Continuous Deployment

summary:

» Systems should be re-engineered
to be upgraded live.

e [here are many technigues, and
many variations.

 Once automated, upgrades can be
more frequent, with higher
confidence.

Abllity to Upgrade Is becoming

a business imperative

* |t accelerates the abillity to roll

out
lagle

e |1 IS

new features and

rovements.
a prerequisite to maintaining

security. (Shellshock, anyone?)

Live Upgrades
On Running With mte[ilfrom...

’ T §,
N VOLUME R4

| THE PRACTICE OF
yS e m S - CLOUD SYSTEM

, ADMINISTRATION
8 Ways to Upgrade a Running TR el
Service With Zero Downtime

Tom Limoncelli @YesThatTom
EverythingSysadmin.com

AA

